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Topological population analysis from higher order
densities 1. The correlated case
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This work describes the mathematical aspects of the generalization of our earlier study
of topological population analysis [J. Math. Chem. 28 (2000) 83] beyond the scope of HF
approximation. The paper shows the relation of this general approach to earlier, heuristically
introduced, procedures of population analysis, exemplified by the Mulliken population analy-
sis and its subsequent extensions which are straightforwardly derived from this framework as
particular cases.

KEY WORDS: population analysis, bond orders, multicenter bond indices

1. Introduction

According to quantum mechanics, the most complete information about the prop-
erties of microscopic systems like atoms, molecules and clusters is contained in the
N-electron wavefunction resulting from the solution of the corresponding Schrédinger
equation. Although there is nowdays no problem to generate reliable wavefunctions
even for sizeable systems, the complexity of these wavefunctions makes it more difficult
to retrieve from them anything reminiscent of intuitive concepts of bonds, bond orders,
valences etc., in terms of which chemists are used to think about molecules and their
structures. The reason is that the vast amount of information contained in the wavefunc-
tion is, for chemical purposes, superflous. One important task of the chemical theory
is therefore to design new auxilary methods and procedures alowing to eliminate this
superflous information from the wavefuntions, so that the classical concepts could again
be recovered from them. One of the most general and fruitful of such procedures is
based on the transformation of the wavefunctions into simpler reduced density matrices
and, during years, a wealth of studies dealing with the application of these matrices to
structural elucidation was carried out.
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Among the well-known examples of such studies isthe Mulliken population analy-
sis [1] but, more recently, other related techniques were proposed in which the idea of
the partitioning of the Hilbert space spanned by the basis functions between the atomic
nuclei was systematically explored [2-10]. In addition to these earlier approaches, an
aternative population anaysis scheme was also formulated [11-17] within the AIM the-
ory [18-21], in terms of which the real spaceis partitioned into atomic domains bounded
by a surface of zero flux in the gradient vector field of the electron density. Into the
framework of these efforts can aso be included our recent study [17] in which the topo-
logical AIM generalized population analysis was formulated. In this study, however,
the formalism was introduced only at the level of simple Hartree—Fock approximation.
Nevertheless, the distribution of electrons in moleculesis undoubtedly influenced by the
electron correlation and, conseguently, the values of bond indices and populations have
also to be correspondingly affected. Our aim in this study is to address this question and
to generalize the previously introduced formalism to correlated post-Hartree—~ock level
of theory. In addition to this primary aim, another important achievement of this study
is to demostrate the relation of the above most general formulation of the population
analysis to the earlier, often heuristically introduced, procedures.

The paper is organized as follows: section 2 develops the mathematical treatment
of the second-order correlation function, which provides the rigorous definition of cor-
related bond order or two-center bond index. This definition is based on the idea of an
appropriate partitioning of the integrated correlation function, so that the corresponding
bond orders are defined as two-center terms arising from such a partitioning. In the 3rd
section, asimilar treatment is applied to the third-order correlation function, which lead
to the post-Hartree—Fock generalization of the concept of three-center bond index asthe
guantity allowing to detect and to localize the eventual presence of three-center bondings
in molecules.

2.  Thesecond-order corréation function

In spite of its potencia importance, the generadization of the idea of bond order or
two-center bond index beyond the scope of the Hartree—Fock approximation has so far
received scarce attention and only afew studies addressing this problem can be found in
the literature [11-15,22-24]. Moreover, the common problem to the mgjority of these
studiesisthat, in addition to using different mathematical languages, they often use dif-
ferent terminology to denote the same quantity so that the close relation or equivalence
of the corresponding approaches is not evident. In order to clarify this confusing situa-
tion, we are going to propose a general mathematical framework for the formulation of
the post-Hartree—Fock population analysis in terms of the second quantized formalism.
The fundamental rolein this generalization belong to the concept of correlation function.

L et us define the second-order correlation function corresponding to an N-electron
state |L£) as

1
Y = Sl v mlef - (£l cov! Gav oy G| ] (1)
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where

Y = Zasl(x) c, YOy = Z¢ eSe @)

are the annihilation and creation field operators [25], ¢; and c,. are the annihilation
and creation fermion operators [25,26], {¢; (1)} is a set of orthogonal spin-orbitals and
A stands for the space » and spin o coordinates of afermion.

The integration of equation (1) over the whole space 2 leads to

/Q drgdr, = ) (%103 'Df — ZD;’;) /Q ¢F (AP (A2)d (M) (A1) dhrdhz  (3)
i,j,k,l
where 1Di = (£|c c ]|L‘) are matrix elements of the first-order reduced density matrix
and DY = (£|c cleie;|L) are matrix elements of the second-order reduced density
matrix. (Note that the trace of the matrix 2D is (}).) At the Hartree—Fock level, where
|£) isaSlater determinant, 2D§.’; = %(le. Ipf —1Di 1Dj‘.) and, consequently, the function
% is described only by the exchange terms 'Dj 'D¥. In equation (3), the integration over
the whole space 2 can be performed in two different ways, as is described in the two
following subsections.

2.1. Topological treatment

Within this approach let us consider, in equation (3), the partitioning of the whole
space Q2 into the Bader’'s atomic regions 4 [18]. Taking into account that it holds
Q=U,Q and Qs N Qg =0 (YA, B; A # B), equation (3) can be written in the
form

)HIDD ‘ N
( 1D’ 1Dl 2D7;> / ¢,*()¥1)¢j ()\.1) d)\'l ¢1>:()‘2)¢l()\2) d)&z — (4)
Qa Qp i,jkl QA Qp —2

from which the following partitioning can be performed

2 2
V=2 dak D S )
Qa<Qp
where
Agj\ = Z (*D} D} — 2°D'}) Si; () Sk (R, (6)
i,j,k,l
A2 o =2 ("D 'Df — 2DIE) S (Qu) Su(@s) (R < ) ™
i,j,k,l

and S;; (24), S;;(2p) etc. arethe matrix elements of the overlap matrices calculated over
the regions 24, Q2p €tc.
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Consistent with the philosophy of the population analysis, the correlated bond or-
der is given by the biatomic term AgZQB in equation (5). It isinteresting to remark that
basically the same quantity was proposed as a measure of the correlated bond order in
the study by Ponec and Uhlik [13]. Similarly, AgZQB corresponds to the delocalization
index described by Fradera et al. [14] asthe sum —(F (24, Q) + F(2p, 24)), Where

F(Qa, ) =Y (22D — D} "Df) S (24)Su(R). (8)
i,jk,l

The same quantity was aso reported by Angyan et a. [15] who denote it as the fluctua-
tion bond order. All these concepts can straightforwardly be derived from equation (3).

2.2. Mulliken-type treatment

An dternative treatment of equation (3) leads to quantities that are significant in
Mulliken population analysis procedures. From the direct integration of this equation
we obtain

, 1, . , N
() =2 v = Z(jD; D - ZD;,’:) =5 ©)
ik i,k
which can be regarded as a partitioning of the N electrons in the molecule according to
the diagonal elements yt of the matrix 2. Obviously, if the basis set is non-orthogonal
equation (9) must be substituted by Y,  (G(*PS)I(*PS); — CPSS)k) = N/2, where
P.2P and S are the usual charge density, pair density and overlap matrices, respec-
tively.
Equation (9) suggests the partitioning

N=Y AP+> AD (10)
A A<B
where
A A
Ay =)0 (D Df = 2°Df), (12)
i k
A B
AR = 22 Z(lD;I Ipk—22D") (A < B) (12)
i k

and A, B, etc. stand for different nuclei of the molecule.

Expression (12) constitutes the definition of bond order, A‘?),, between two nuclei
A and B at any level of theory and it turns out to be equivalent to the definition of bond
order proposed by Giambiagi et a. [27] which has widely been used by Yamasaki and
Goddard [28] and Yamasaki et al. [29] in terms of covariance (correlation of fluctua
tions) of the charge operators G, and gz, that is, Ay = —2((Ga — (Ga)) (G5 — (§5))).
At the HartreeFock level, equation (12) leads to A%, = 234 38 1pi 1%, which
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corresponds, in the spin-orbital notation, to the bond index originaly introduced by
Wiberg [2] and subsequently generalized by Giambiagi et al. [30] and Mayer [31] and to
the so called effective pair populations [8]. More recently, the terms (!D! 1Df — 22Dix)
have been studied by Karafiloglou [22] in order to discuss the role of Coulomb and
Fermi correlations in chemical bondings. Within our derivation all these concepts are
easily obtained from the partitioning of the trace of the correlation density matrix 2.

3.  Thethird-order correation function

At the third-order level, the most appropiate definition for the correlation function
turns out to be

Y= (—15[2<£|w*<x>w<x)|£>3
— L]y DY A2 ¥ ¥ 0| L) (L] T ey (1) | L)
— L]y DY M) v )y 0| L) (L] T v (12)| L)
— (LY 0¥ T )Y (ha) ¥ ()| L) L]y T (v (M) | L)
+(L[YT DY T Y T (e ¥ ()Y ()Y (A1) |L)] (13)

which is equivalent to the functional suggested by one of usin [24].
The integration of the function 3 over the whole space 2 leads to

/ 3 diqdr, dig
Q
11 i Ik 1ym 1 i 2ykm 1 k 2yim 1 m 2nyik 3 nikm
= Z (éDle Dn_éDlen_éDl Djn_éDn Djl+Djln
i,j,k,l,m,n
X / ¢ A (A2, (A3), (A3)Pr(A2)@j (A1) dA1dro dAs (14)
Q

where 3D’ = (L |clelcl cueic;|£) are the matrix elements of the third-order reduced
density matrix.

3.1. Topological treatment

A topological treatment can be obtained when the whole space €2, in equation (14),
is regarded as a digoint union of Bader atomic regions. In that case, the following
partitioning can be performed:

3 (©) 3
N = Z AQA + Z AQAQB + Z AQAQBQC (15)
Q4

Qp<Qp QA<Qp<Qc
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and the three-center bond index can be identified with the triatomic component of the
partitioning (15)
Aanac=6 Y (D) D}y — D) Ipfy — Dk i — pp2ik + ik
i,j,k,l,m,n

X 8;j(§24) S (§28) Spun (2¢) - (24 < R < Q). (16)

The three-center bond index can also be formulated in terms of the function
F(Qa, 25, Qc):
F(Q4.925.Qc)= Y (*'Di'Df Dy — "D’} —'Df°Din — D D' 4 3Dikm)
i,j,k,l,m,n

X Sij (§24) Sk (§2) Sn (S2¢) 17

which is equivalent to
1 A .
F(QA,QB,QC)=§[ > (6°Din — D Df D) S (24) St (25) S (R2c)

i,j,k,l,m,n

— F(Q5.20) Y _'DiSij(Qu)
i,j

— F(Qa. Q) Y 'DfSu(Sp)
k,l

— F(Q. Q) Y 1D::’Smn<szc)] (18)

m,n

This function is normalized to N and the sum of its different permutations is the
three-center bond index ASBXQBQC that represents the sharing of electrons between three
topological regions (24, Qz, 2¢). A preliminary version of this function (normalized
to 2N) has previously been reported by usin[32] whichisonly valid at the Hartree—Fock
level. However, the current formulation is quite general at any level of theory.

3.2. Mulliken-type treatment

In the Mulliken-type approach we integrate the 3 function over the whole space €,
which leads to

A 1. . 1, . 1 .
_ ikm __ Tlnilnklpnym _ T1lnyi 2nykm "1k 2yim
tr(sy)_zytkm_Z(th Dk Dm 3D1 ka 3Dk Dim
i,k,m i,k,m
1 , . N
- Son il = 5 (19)
which allows one to perform the partitioning of N electrons according to termsinvolving
spin-orbitals centered on one-, two- or three nuclei.
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The concept of three-center index has found a broad use as an appropriate tool
to detect and to localize the presence of three-center bondings in molecules [33-37].
However, these indices have only been used at semiempirical and Hartree—Fock levels.
The partitioning given in equation (19) provides the rigorous definition of three-center
bond index, Afgc, a any level of theory. Following identical procedure as for second-
order we have

A B C
3) Ini 1kl 1ni 2k 1INk 2y 1 2nik 3k
ATy =6 3" ("pi'Df "Dy — DI D — "D Dl — D DI + FDif)
i k m

(A< B < () (20)

which can aso be expressed in terms of the correlations between the fluctuations of the
charge operators for nuclei A, B and C, that is A, . = 3((Ga — (G4)) (G — (G8) (e —
(Gc))). At the Hartree-Fock level equation (20) leads to the three-center index A%, . =
6 437 3¢ 1pi Ipt Ipm which is the spin-orbital version of the formula previously
reported by us[37] and it is proportional to the I,5¢ index reported by other authors [6,
33-36].

Although the three-center bonds certainly represents the simplest form of multicen-
ter bondings, the application of bond indices of higher than third-order was also recently
reported by Giambiagi et al., who used, for example, six-center bond indices to discuss
the aromaticity of benzenoid hydrocarbons [38]. It is, however, necessary to stress that
the practical experience with the use of these indices for the interpretation of the molec-
ular structures has so far been obtained only at semiempirical or Hartree—Fock levels of
theory. The reason is that the calculations of multicenter indices at post-Hartree—Fock
level rely on the knowledge of correlated higher order densities which are not available
from standard quantum chemistry codes and, consequently, these calculations are not
straightforward at present. We nevertheless belive that the systematic study of the ef-
fects of electron correlation on the phenomenon of multicenter bondings is worthwhile
and first such studies are being performed in our laboratories.

Acknowledgements

A.T. and L.L. thank DGI (Spain) and the Universidad del Pais Vasco for their
support in the projects No. BQU2000-0216 and 00039.310-EB7730/2000 respec-
tively. R.B. acknowledges grants in aid from the University of Buenos Aires (project
No. X-119), Consgjo Naciona de Investigaciones Cientificasy Técnicas, Republica Ar-
gentina (PIP No. 02151/01), and the Department of Physics, Facultad de Ciencias Ex-
actas y Naturales, University of Buenos Aires, for facilities provided during the course
of this work. R.P. thanks the support of the Grant agency of Ministery of Education
(Grant No. D09.20) and the Grant agency of the Czech Academy of Sciences (Grant
No. A4072006) for the support of this work.



248

A. Torre et al. / Topological population analysis

References

[1]
(2]
(3]
[4]
(5]
(6]
[7]
(8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]

[19]
[20]
[21]
[22]
[23]
[24]
[25]

[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
(38]

R.S. Mulliken, J. Chem. Phys. 23 (1955) 1833.

K.A. Wiberg, Tetrahedron 24 (1968) 1083.

D.A. Armstrong, P.G. Perkins and J.J.P. Stewart, J. Chem. Soc. Dalton Trans. (1973) 838, 2273.

I. Mayer, Int. J. Quant. Chem. 23 (1983) 341.

I. Mayer, J. Mal. Struct. (Theochem) 186 (1989) 43.

A.B. Sannigrahi and T. Kar, Chem. Phys. Lett. 173 (1990) 569.

M. Giambiagi, M.S. Giambiagi and K.C. Mundim, Struct. Chem. 1 (1990) 123.

R. Ponec and M. Strnad, Int. J. Quant. Chem. 50 (1994) 43.

R. Ponec and R.C. Bochicchio, Int. J. Quant. Chem. 54 (1995) 99.

R. Ponec, A. Torre, L. Lain and R.C. Bochicchio, Int. J. Quant. Chem. 77 (2000) 710.

J. Ciodowski and S.T. Mixon, J. Am. Chem. Soc. 113 (1991) 4142.

J.G. Angyan, M. Loos and |. Mayer, J. Phys. Chem. 98 (1994) 5244.

R. Ponec and F. Uhlik, J. Mal. Struct. (Theochem) 391 (1997) 159.

X. Fradera, M.A. Austen and R.FW. Bader, J. Phys. Chem. A 103 (1999) 304.

J.G. Angyan, E. Rostaand PR. Surjan, Chem. Phys. Lett. 299 (1999) 1.

T. Kar, J.G. Angyan and A.B. Sannigrahi, J. Phys. Chem. A 104 (2000) 9953.

R.C. Bochicchio, L. Lain, A. Torre and R. Ponec, J. Math. Chem. 28 (2000) 83.

R.F.W. Bader, Atoms in Molecules. A Quantum Theory (Clarendon Press, Oxford, 1994) and refer-
ences therein.

R.F.W. Bader, Phys. Rev. B 49 (1994) 13348.

R.F.W. Bader, PL.A. Popelier and T.A. Keith, Angew. Chem. Int. Ed. 33 (1994) 620.

R.F.W. Bader, Theor. Chem. Acc. 105 (2001) 276.

P. Kardfiloglou, J. Phys. Chem. A 105 (2001) 4524.

R. Ponec, F. Uhlik, D.L. Cooper and K. Jug, Croat. Chem. Acta 69 (1996) 933.

R. Ponec and F. Uhlik, Croat. Chem. Acta 69 (1996) 941.

A.L. Fetter and J.D. Walecka, Quantum Theory of Many-Body Systems (McGraw-Hill, New York,
1971).

P.R. Surjan, Second Quantized Approach to Quantum Chemistry (Springer, Berlin, 1989).

M.S. Giambiagi, M. Giambiagi and F.E. Jorge, Theor. Chem. Acta 68 (1985) 337.

T. Yamasaki and W.A. Goddard 11, J. Phys. Chem. A 102 (1998) 2919.

T. Yamasaki, D.T. Mainz and W.A Goddard I1, J. Phys. Chem. A 104 (2000) 2221.

M. Giambiagi, M.S. de Giambiagi, D.R. Grempel and C.D. Heymann, J. Chim. Phys. 72 (1975) 15.
I. Mayer, Chem. Phys. Lett. 97 (1983) 270.

R. Bochicchio, R. Ponec, A. Torreand L. Lain, Theor. Chem. Acc. 105 (2001) 292.

A.B. Sannigrahi, PK. Nandi, L. Beheraand T. Kar, J. Mal. Struct. (Theochem) 276 (1992) 259.
C.G. Ballini, M. Giambiagi, M.S. de Giambiagi and A.P. Figueiredo, J. Math. Chem. 28 (2000) 71.
A.B. Sannigrahi and T. Kar, Chem. Phys. Lett. 299 (1999) 518.

M. Segre, M. Giambiagi and M. Souza, J. Mol. Struct. (Theochem) 391 (1997) 141.

R.C. Bochicchio, R. Ponec, L. Lainand A. Torre, J. Phys. Chem. A 102 (1998) 7176.

M. Giambiagi, M.S. de Giambiagi, C.D. Silvaand A.P. Figueiredo, Phys. Chem. Chem. Phys. 2 (2000)
3381.



