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This work describes the mathematical aspects of the generalization of our earlier study
of topological population analysis [J. Math. Chem. 28 (2000) 83] beyond the scope of HF
approximation. The paper shows the relation of this general approach to earlier, heuristically
introduced, procedures of population analysis, exemplified by the Mulliken population analy-
sis and its subsequent extensions which are straightforwardly derived from this framework as
particular cases.
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1. Introduction

According to quantum mechanics, the most complete information about the prop-
erties of microscopic systems like atoms, molecules and clusters is contained in the
N-electron wavefunction resulting from the solution of the corresponding Schrödinger
equation. Although there is nowdays no problem to generate reliable wavefunctions
even for sizeable systems, the complexity of these wavefunctions makes it more difficult
to retrieve from them anything reminiscent of intuitive concepts of bonds, bond orders,
valences etc., in terms of which chemists are used to think about molecules and their
structures. The reason is that the vast amount of information contained in the wavefunc-
tion is, for chemical purposes, superflous. One important task of the chemical theory
is therefore to design new auxilary methods and procedures allowing to eliminate this
superflous information from the wavefuntions, so that the classical concepts could again
be recovered from them. One of the most general and fruitful of such procedures is
based on the transformation of the wavefunctions into simpler reduced density matrices
and, during years, a wealth of studies dealing with the application of these matrices to
structural elucidation was carried out.
∗ Corresponding author.
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Among the well-known examples of such studies is the Mulliken population analy-
sis [1] but, more recently, other related techniques were proposed in which the idea of
the partitioning of the Hilbert space spanned by the basis functions between the atomic
nuclei was systematically explored [2–10]. In addition to these earlier approaches, an
alternative population analysis scheme was also formulated [11–17] within the AIM the-
ory [18–21], in terms of which the real space is partitioned into atomic domains bounded
by a surface of zero flux in the gradient vector field of the electron density. Into the
framework of these efforts can also be included our recent study [17] in which the topo-
logical AIM generalized population analysis was formulated. In this study, however,
the formalism was introduced only at the level of simple Hartree–Fock approximation.
Nevertheless, the distribution of electrons in molecules is undoubtedly influenced by the
electron correlation and, consequently, the values of bond indices and populations have
also to be correspondingly affected. Our aim in this study is to address this question and
to generalize the previously introduced formalism to correlated post-Hartree–Fock level
of theory. In addition to this primary aim, another important achievement of this study
is to demostrate the relation of the above most general formulation of the population
analysis to the earlier, often heuristically introduced, procedures.

The paper is organized as follows: section 2 develops the mathematical treatment
of the second-order correlation function, which provides the rigorous definition of cor-
related bond order or two-center bond index. This definition is based on the idea of an
appropriate partitioning of the integrated correlation function, so that the corresponding
bond orders are defined as two-center terms arising from such a partitioning. In the 3rd
section, a similar treatment is applied to the third-order correlation function, which lead
to the post-Hartree–Fock generalization of the concept of three-center bond index as the
quantity allowing to detect and to localize the eventual presence of three-center bondings
in molecules.

2. The second-order correlation function

In spite of its potencial importance, the generalization of the idea of bond order or
two-center bond index beyond the scope of the Hartree–Fock approximation has so far
received scarce attention and only a few studies addressing this problem can be found in
the literature [11–15,22–24]. Moreover, the common problem to the majority of these
studies is that, in addition to using different mathematical languages, they often use dif-
ferent terminology to denote the same quantity so that the close relation or equivalence
of the corresponding approaches is not evident. In order to clarify this confusing situa-
tion, we are going to propose a general mathematical framework for the formulation of
the post-Hartree–Fock population analysis in terms of the second quantized formalism.
The fundamental role in this generalization belong to the concept of correlation function.

Let us define the second-order correlation function corresponding to anN-electron
state |L〉 as

2γ = 1

2

[〈
L

∣∣ψ†(λ)ψ(λ)
∣∣L〉2 − 〈

L
∣∣ψ†(λ1)ψ

†(λ2)ψ(λ2)ψ(λ1)
∣∣L〉]

(1)
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where

ψ(λ) =
∑
i

φi(λ) ci, ψ†(λ) =
∑
i

φ∗i (λ) c
†
i (2)

are the annihilation and creation field operators [25], ci and c†
i are the annihilation

and creation fermion operators [25,26], {φi(λ)} is a set of orthogonal spin-orbitals and
λ stands for the space r and spin σ coordinates of a fermion.

The integration of equation (1) over the whole space 
 leads to∫



2γ dλ1dλ2 =
∑
i,j,k,l

(
1

2
1Di

j
1Dk

l − 2Dik
jl

) ∫



φ∗i (λ1)φ
∗
k (λ2)φl(λ2)φj (λ1) dλ1 dλ2 (3)

where 1Di
j = 〈L|c†

i cj |L〉 are matrix elements of the first-order reduced density matrix

and 2Dik
jl = 1

2 〈L|c†
i c

†
kclcj |L〉 are matrix elements of the second-order reduced density

matrix. (Note that the trace of the matrix 2D is
(
N

2

)
.) At the Hartree–Fock level, where

|L〉 is a Slater determinant, 2Dik
jl = 1

2 (
1Di

j
1Dk

l − 1Di
l

1Dk
j ) and, consequently, the function

2γ is described only by the exchange terms 1Di
l

1Dk
j . In equation (3), the integration over

the whole space 
 can be performed in two different ways, as is described in the two
following subsections.

2.1. Topological treatment

Within this approach let us consider, in equation (3), the partitioning of the whole
space 
 into the Bader’s atomic regions 
A [18]. Taking into account that it holds

 = ⋃

A 
A and 
A ∩ 
B = ∅ (∀A,B;A 
= B), equation (3) can be written in the
form
∑

A

∑

B

∑
i,j,k,l

(
1

2
1Di

j
1Dk

l −2Dik
jl

)∫

A

φ∗i (λ1)φj (λ1) dλ1

∫

B

φ∗k (λ2)φl(λ2) dλ2 = N

2
(4)

from which the following partitioning can be performed

N =
∑

A

�
(2)

A
+

∑

A<
B

�
(2)

A
B

(5)

where

�
(2)

A
=

∑
i,j,k,l

(1Di
j

1Dk
l − 22Dik

jl

)
Sij (
A)Skl(

A), (6)

�
(2)

A
B

= 2
∑
i,j,k,l

(1Di
j

1Dk
l − 22Dik

jl

)
Sij (
A) Skl(
B) (
A < 
B) (7)

and Sij (
A), Sij (
B) etc. are the matrix elements of the overlap matrices calculated over
the regions 
A, 
B etc.
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Consistent with the philosophy of the population analysis, the correlated bond or-
der is given by the biatomic term �

(2)

A
B

in equation (5). It is interesting to remark that
basically the same quantity was proposed as a measure of the correlated bond order in
the study by Ponec and Uhlik [13]. Similarly, �(2)


A
B
corresponds to the delocalization

index described by Fradera et al. [14] as the sum −(F (
A,
B)+ F(
B,
A)), where

F(
A,
B) =
∑
i,j,k,l

(
22Dik

jl − 1Di
j

1Dk
l

)
Sij (
A)Skl(
B). (8)

The same quantity was also reported by Angyan et al. [15] who denote it as the fluctua-
tion bond order. All these concepts can straightforwardly be derived from equation (3).

2.2. Mulliken-type treatment

An alternative treatment of equation (3) leads to quantities that are significant in
Mulliken population analysis procedures. From the direct integration of this equation
we obtain

tr
(

2γ
) =∑

i,k

γ ikik =
∑
i,k

(
1

2
1Di

i
1Dk

k − 2Dik
ik

)
= N

2
(9)

which can be regarded as a partitioning of the N electrons in the molecule according to
the diagonal elements γ ikik of the matrix 2γ . Obviously, if the basis set is non-orthogonal
equation (9) must be substituted by

∑
i,k(

1
2(

1PS)ii(
1PS)kk − (2PSS)ikik) = N/2, where

1P ,2P and S are the usual charge density, pair density and overlap matrices, respec-
tively.

Equation (9) suggests the partitioning

N =
∑
A

�
(2)
A +

∑
A<B

�
(2)
AB (10)

where

�
(2)
A =

A∑
i

A∑
k

(1Di
i

1Dk
k − 22Dik

ik

)
, (11)

�
(2)
AB = 2

A∑
i

B∑
k

(
1Di

i
1Dk

k − 22Dik
ik

)
(A < B) (12)

and A, B, etc. stand for different nuclei of the molecule.
Expression (12) constitutes the definition of bond order, �(2)

AB , between two nuclei
A and B at any level of theory and it turns out to be equivalent to the definition of bond
order proposed by Giambiagi et al. [27] which has widely been used by Yamasaki and
Goddard [28] and Yamasaki et al. [29] in terms of covariance (correlation of fluctua-
tions) of the charge operators q̂A and q̂B , that is, �(2)

AB = −2〈(q̂A − 〈q̂A〉)(q̂B − 〈q̂B〉)〉.
At the Hartree–Fock level, equation (12) leads to �(2)

AB = 2
∑A

i

∑B
k

1Di
k

1Dk
i , which
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corresponds, in the spin-orbital notation, to the bond index originally introduced by
Wiberg [2] and subsequently generalized by Giambiagi et al. [30] and Mayer [31] and to
the so called effective pair populations [8]. More recently, the terms (1Di

i
1Dk

k − 22Dik
ik )

have been studied by Karafiloglou [22] in order to discuss the role of Coulomb and
Fermi correlations in chemical bondings. Within our derivation all these concepts are
easily obtained from the partitioning of the trace of the correlation density matrix 2γ .

3. The third-order correlation function

At the third-order level, the most appropiate definition for the correlation function
turns out to be

3γ = 1

6

[
2
〈
L

∣∣ψ†(λ)ψ(λ)
∣∣L〉3

− 〈
L

∣∣ψ†(λ1)ψ
†(λ2)ψ(λ2)ψ(λ1)

∣∣L〉 〈
L

∣∣ψ†(λ3)ψ(λ3)
∣∣L〉

− 〈
L

∣∣ψ†(λ1)ψ
†(λ3)ψ(λ3)ψ(λ1)

∣∣L〉 〈
L

∣∣ψ†(λ2)ψ(λ2)
∣∣L〉

− 〈
L

∣∣ψ†(λ2)ψ
†(λ3)ψ(λ3)ψ(λ2)

∣∣L〉 〈
L

∣∣ψ†(λ1)ψ(λ1)
∣∣L〉

+ 〈
L

∣∣ψ†(λ1)ψ
†(λ2)ψ

†(λ3)ψ(λ3)ψ(λ2)ψ(λ1)
∣∣L〉]

(13)

which is equivalent to the functional suggested by one of us in [24].
The integration of the function 3γ over the whole space 
 leads to

∫



3γ dλ1 dλ2 dλ3

=
∑

i,j,k,l,m,n

(
1

3
1Di

j
1Dk

l
1Dm

n −
1

3
1Di

j
2Dkm

ln −
1

3
1Dk

l
2Dim

jn −
1

3
1Dm

n
2Dik

jl + 3Dikm
jln

)

×
∫



φ∗i (λ1)φ
∗
k (λ2)φ

∗
m(λ3)φn(λ3)φl(λ2)φj (λ1) dλ1 dλ2 dλ3 (14)

where 3Dikm
jln = 1

6〈L|c†
i c

†
kc

†
mcnclcj |L〉 are the matrix elements of the third-order reduced

density matrix.

3.1. Topological treatment

A topological treatment can be obtained when the whole space 
, in equation (14),
is regarded as a disjoint union of Bader atomic regions. In that case, the following
partitioning can be performed:

N =
∑

A

�
(3)

A
+

∑

A<
B

�
(3)

A
B

+
∑


A<
B<
C

�
(3)

A
B
C

(15)



246 A. Torre et al. / Topological population analysis

and the three-center bond index can be identified with the triatomic component of the
partitioning (15)

�
(3)

A
B
C

= 6
∑

i,j,k,l,m,n

(
1Di

j
1Dk

l
1Dm

n − 1Di
j

2Dkm
ln − 1Dk

l
2Dim

jn − 1Dm
m

2Dik
jl + 33Dikm

ikm

)

× Sij (
A)Skl(
B)Smn(
C) (
A < 
B < 
C). (16)

The three-center bond index can also be formulated in terms of the function
F(
A,
B,
C):

F(
A,
B,
C)=
∑

i,j,k,l,m,n

(1Di
j

1Dk
l

1Dm
n − 1Di

j
2Dkm

ln − 1Dk
l

2Dim
jn − 1Dm

m
2Dik

jl + 33Dikm
ikm

)

× Sij (
A)Skl(
B)Smn(
C) (17)

which is equivalent to

F(
A,
B,
C)= 1

2

[ ∑
i,j,k,l,m,n

(
63Dikm

ikm − 1Di
j

1Dk
l

1Dm
n

)
Sij (
A)Skl(
B)Smn(
C)

− F(
B,
C)
∑
i,j

1Di
jSij (
A)

− F(
A,
C)
∑
k,l

1Dk
l Skl(
B)

− F(
A,
B)
∑
m,n

1Dm
n Smn(
C)

]
. (18)

This function is normalized to N and the sum of its different permutations is the
three-center bond index �(3)


A
B
C
that represents the sharing of electrons between three

topological regions (
A,
B,
C). A preliminary version of this function (normalized
to 2N) has previously been reported by us in [32] which is only valid at the Hartree–Fock
level. However, the current formulation is quite general at any level of theory.

3.2. Mulliken-type treatment

In the Mulliken-type approach we integrate the 3γ function over the whole space
,
which leads to

tr
(

3γ
)=∑

i,k,m

γ ikmikm =
∑
i,k,m

(
1

3
1Di

i
1Dk

k
1Dm

m −
1

3
1Di

i
2Dkm

km −
1

3
1Dk

k
2Dim

im

− 1

3
1Dm

m
2Dik

ik + 3Dikm
ikm

)
= N

3
(19)

which allows one to perform the partitioning ofN electrons according to terms involving
spin-orbitals centered on one-, two- or three nuclei.
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The concept of three-center index has found a broad use as an appropriate tool
to detect and to localize the presence of three-center bondings in molecules [33–37].
However, these indices have only been used at semiempirical and Hartree–Fock levels.
The partitioning given in equation (19) provides the rigorous definition of three-center
bond index, �(3)

ABC , at any level of theory. Following identical procedure as for second-
order we have

�
(3)
ABC = 6

A∑
i

B∑
k

C∑
m

(
1Di

i
1Dk

k
1Dm

m − 1Di
i

2Dkm
km − 1Dk

k
2Dim

im − 1Dm
m

2Dik
ik + 33Dikm

ikm

)

(A < B < C) (20)

which can also be expressed in terms of the correlations between the fluctuations of the
charge operators for nuclei A, B and C, that is�(3)

ABC = 3〈(q̂A−〈q̂A〉)(q̂B −〈q̂B〉)(q̂C −
〈q̂C〉)〉. At the Hartree–Fock level equation (20) leads to the three-center index �(3)

ABC =
6
∑A

i

∑B
k

∑C
m

1Di
k

1Dk
m

1Dm
i which is the spin-orbital version of the formula previously

reported by us [37] and it is proportional to the IABC index reported by other authors [6,
33–36].

Although the three-center bonds certainly represents the simplest form of multicen-
ter bondings, the application of bond indices of higher than third-order was also recently
reported by Giambiagi et al., who used, for example, six-center bond indices to discuss
the aromaticity of benzenoid hydrocarbons [38]. It is, however, necessary to stress that
the practical experience with the use of these indices for the interpretation of the molec-
ular structures has so far been obtained only at semiempirical or Hartree–Fock levels of
theory. The reason is that the calculations of multicenter indices at post-Hartree–Fock
level rely on the knowledge of correlated higher order densities which are not available
from standard quantum chemistry codes and, consequently, these calculations are not
straightforward at present. We nevertheless belive that the systematic study of the ef-
fects of electron correlation on the phenomenon of multicenter bondings is worthwhile
and first such studies are being performed in our laboratories.
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